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Figure 1: (a) – (d) shows the pipeline of our algorithm: (a) The height function on the input surface. (b) Reeb graph w.r.t. the height function.
(c) Initial handle and tunnel loops. (d) Final handle / tunnel loops after geometric optimization. (e) The output is stable under noise.

Abstract

A special family of non-trivial loops on a surface called handle and
tunnel loops associates closely to geometric features of “handles”
and “tunnels” respectively in a 3D model. The identification of
these handle and tunnel loops can benefit a broad range of applica-
tions from topology simplification / repair, and surface parameteri-
zation, to feature and shape recognition. Many of the existing effi-
cient algorithms for computing non-trivial loops cannot be used to
compute these special type of loops. The two algorithms known for
computing handle and tunnel loops provably have a serious draw-
back that they both require a tessellation of the interior and exterior
spaces bounded by the surface. Computing such a tessellation of
three dimensional space around the surface is a non-trivial task and
can be quite expensive. Furthermore, such a tessellation may need
to refine the surface mesh, thus causing the undesirable side-effect
of outputting the loops on an altered surface mesh.

In this paper, we present an efficient algorithm to compute a basis
for handle and tunnel loops without requiring any 3D tessellation.
This saves time considerably for large meshes making the algorithm
scalable while computing the loops on the original input mesh and
not on some refined version of it. We use the concept of the Reeb
graph which together with several key theoretical insights on link-
ing number provide an initial set of loops that provably constitute
a handle and a tunnel basis. We further develop a novel strategy to
tighten these handle and tunnel basis loops to make them geomet-
rically relevant. We demonstrate the efficiency and effectiveness of
our algorithm as well as show its robustness against noise, and other
anomalies in the input.
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1 Introduction

The computation of topologically non-trivial loops on a surface em-
bedded in three dimensions appears as a sub-step in many geome-
try processing applications. These applications generally benefit
greatly if the non-trivial loops encode geometric features such as
‘handles’ and ‘tunnels’ of the 3D model. The non-trivial loops
that identify such features are of great interest in topology re-
pair [Bischoff and Kobbelt 2005; Zhou et al. 2007]. If these fea-
tures appear as spurious, it is desirable to eliminate them so that
they do no interfere with further processing. In surface parame-
terization [Ben-Chen et al. 2008; Gu et al. 2002; Sheffer and Hart
2002], the input surface mesh needs to be cut along non-trivial loops
into a flat disk. This again benefits from the detection of loops that
are small around ‘handles’ and ‘tunnels” because the side-effect
of boundary caused by cutting along such small features remains
small. Feature recognition and shape correspondence [Biasotti et al.
2008; van Kaick et al. 2010] are key problems in various applica-
tions which clearly benefit from localizing the features to loops that
are associated with ‘handles’ and ‘tunnels’ [Dey et al. 2008].
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Figure 2: γ1 is a
handle loop and γ2

a tunnel loop. γ3 is
neither.

The non-triviality of loops can be
mathematically characterized by draw-
ing upon the concepts of homology
and homotopy [Munkres 1996]. Since
these concepts alone do not take into
account the surface embedding, they
need not capture the geometric features
such as handles and tunnels. To ad-
dress this issue, the authors in [Dey
et al. 2007] introduced the definitions
of handle and tunnel loops that add
the embedding into the definition of
the non-triviality. In particular, a han-
dle (tunnel) loop on a closed surface
M ⊂ R

3 is a loop that is not a bound-
ary of any subset of M but is so for a
subset of the interior (exterior respec-
tively) of M. Note that this definition
renders many non-trivial loops to be neither a handle nor a tunnel
such as the loop γ3 in Figure 2. Consequently, many of the efficient
algorithms for computing non-trivial loops on surfaces cannot be
applied to compute handle and tunnel loops.

It is clear that any algorithm for computing handle and tunnel loops
has to take into account the embedding of the surface in R

3. The
authors in [Dey et al. 2007] achieved this by incorporating the curve
skeleton of the interior and exterior spaces bounded by the surface
into the algorithm. The computation of these curve skeletons re-
quires a decomposition of the respective spaces by a triangulation
or a similar subdivision and also restricts the class of surfaces on
which the algorithm can be applied. Specifically, the algorithm
could not be applied to the knotted surfaces such as the Knotty Cup
in Figure 6. This restriction was removed by the algorithm in [Dey
et al. 2008], but the need for triangulating the interior and exterior
still persisted. Given a surface mesh in R

3, it is a non-trivial task
to generate the tetrahedral mesh of its interior and exterior. Al-
though different algorithms have been discovered recently [Alliez
et al. 2005; Cheng et al. 2012], a generic software that can take both
smooth and non-smooth surfaces in a time efficient manner is still
missing. The only provably correct algorithm that produces tetra-
hedral meshes out of a given surface mesh that is not necessarily
smooth uses a Delaunay refinement technique [Cheng et al. 2012].
It becomes expensive in terms of computational time and memory
for large meshes. Moreover, the tetrahedral meshing also changes
the input surface mesh which is known to be unavoidable in gen-
eral [Cheng et al. 2012]; see Figure 3 for an example. This makes
the algorithm of [Dey et al. 2008] unusable in many cases. Here,
we present a new algorithm for computing handle and tunnel loops
on a surface mesh without computing any additional 3D structure
such as a tetrahedral mesh. As a result, we eliminate the large pre-
processing time of the previous algorithms [Dey et al. 2007; Dey
et al. 2008] and also the undesirable side-effects of changing the
input surface mesh.

Our contribution. In this paper, we present a simple algorithm to
identify a basis for the family of tunnel loops and for the family of
handle loops efficiently. Our algorithm leverages the concept of the
Reeb graph. The main advantage of our approach is that, the handle
and tunnel loops are computed directly from input surface mesh. It
does not require any additional structure for either the interior or
the exterior of the input surface. Given that the Reeb graph can be
computed efficiently [Pascucci et al. 2007; Harvey et al. 2010; Parsa
2012], our algorithm is orders of magnitude faster than the existing
algorithms for computing a basis for handle/tunnel loops. After
computing a basis for handle and tunnel loops, we tighten them
by using shortest path trees that have been used to compute loops

in a shortest homology basis [Erickson and Whittlesey 2005; Dey
et al. 2011]. We present various examples to demonstrate that our
handle/tunnel computation algorithm is efficient; and our geometric
optimization strategy is effective in producing short handle/tunnel
loops. We also demonstrate that our method is robust against noise
and is impervious to sparsity, non-smoothness, and non-uniformity
that may be present in the input meshes.

Other previous work. A number of theoretically justified algo-
rithms for computing optimal non-trivial loops on surfaces have
been proposed in recent years; see e.g. [Erickson and Whittlesey
2005; Kutz 2006; Colin de Verdière and Erickson 2006]. These
algorithms, however, do not guarantee that the loops are handle
or tunnel. In the context of topological simplifications, several
heuristics have been proposed to identify small handles [El-Sana
and Varshney 1997; Guskov and Wood 2001]. Wood et al. [Wood
et al. 2004] use Reeb graphs like ours to identify small handles and
remove them for topology repair. These algorithms do not have
theoretical guarantees and may not compute the handle and tunnel
loops as we aim for.

The use of a graph for identifying non-trivial loops on a surface
has been proposed earlier. This includes the use of the Reeb graphs
in [Shattuck and Leahy 2001] and some graphs based on the medial
axis in [Zhou et al. 2007]. None of these algorithms guarantee that
the computed loops are handles and tunnels.

(a) (b)

Figure 3: The output of (a) our algorithm and (b) the algorithm
of [Dey et al. 2008] for an input mesh with 449 vertices. Note
that due to the tetrahedral meshing, the algorithm of [Dey et al.
2008] changes the input surface mesh and significantly increases
its complexity to 7943 vertices. Our algorithm obtained handle and
tunnel loops of good quality from the original sparse mesh.

2 Background

2.1 Handle and tunnel loops

Given a topological space X, let Hp(X) denote the p-dimensional
homology group of X under coefficient ring Z2; Hp(X) is a vector
space since Z2 is a field. This paper is concerned only with the
1-dimensional homology group H1(X). See [Munkres 1996] for
detailed introduction on homology groups.

A loop on X is a map γ : S
1 → X, and we say γ is simple if γ(x) �=

γ(y) for any x �= y ∈ S
1. A loop γ is trivial in X if γ alone bounds

a subset of X; that is, it is the boundary of a subset (a collection
of surface patches in case X is a surface) of X. A 1-cycle is a
loop or a union of them. Two 1-cycles γ1 and γ2 are homologous,
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Input : A closed triangular mesh M ⊂ R
3 with genus g;

Output: Handle and tunnel loops of M;

Step 1 : Compute the Reeb graph RbM = RbM(h) for a height function h defined over M;
Step 2 : Compute g independent cycles in RbM by a maximum spanning tree algorithm (described later);
Step 3 : Map the g cycles of RbM back to the surface M. Denoting these cycles as γi (i = 1, .., g), compute the dual level set loop γi

for every γi ;
Step 4 : Perturb every γi and γi inside or outside appropriately to obtain αi and αi respectively. The loops in {αi}g

i=1 ∪ {αi}g
i=1 split

into two groups, one forming a cycle basis for H1(I) and the other for H1(O).
Step 5 : Compute the 2g × 2g matrix L whose entries are the linking number of all possible pairs of curves, one from {γi} ∪ {γi} and

the other from {αj} ∪ {αj}. Compute a handle basis {hi}g
i=1 and a tunnel basis {ti}g

i=1 as a linear combinations of γi and γi

by using L−1;
Step 6 : Shorten hi and ti to get geometrically relevant loops (Section 3.2);

Algorithm 1: Algorithm overview.

if γ1 + γ2 is trivial. The homology class [γ] corresponds to the
family of 1-cycles that are homologous to γ. If γ is trivial, then the
homology class [γ] is the zero element of H1(X). A set of loops
are independent if their homology classes are independent. A set
of loops {γ1, . . . , γk} is a cycle basis for H1(X) if these loops are
independent and [γ1], . . . , [γk] form a basis for the vector space
H1(X).

In this paper, the input we consider is a connected closed surface
M embedded in R

3. Such a surface M is necessarily orientable,
and partitions R

3 into two regions I and O such that I ∩ O = M
and I ∪ O = R

3 (see e.g, [Guillemin and Pollack 2010]). The
unbounded region O is called the exterior of M, while the bounded
one I is the interior of M. Note that I (resp. O) is a 3-manifold with
boundary ∂I = M (resp. ∂O = M). The interior of I (resp. O) is

denoted by I̊ (resp. O̊).

Following [Dey et al. 2007; Dey et al. 2008], we define the handle
and tunnel loops as follows. A loop γ is a handle loop if it is trivial
in I, but non-trivial in O. Similarly, it is a tunnel loop if it is trivial
in O but non-trivial in I. See Figure 2 for examples. It turns out that
the space of all loops on M can be split into the spaces of handle
and tunnel loops each of which has dimension equal to the genus of
the surface. Because of this a non-trivial loop in M cannot be trivial
both in I and O. It follows that a non-trivial loop in M is a handle
(tunnel) if it is trivial in I (respectively O).

Theorem 2.1 (Theorem 1 of [Dey et al. 2007]) For any con-
nected closed surface M ⊂ S

3 of genus g, H1(M) is the direct sum
of H1(I) and H1(O) each of which is g dimensional. Moreover, the
space of handle loops generates H1(O), while the space of tunnel
loops generates H1(I).

2.2 Reeb graph

Our handle/tunnel computation algorithm relies on the concept of
Reeb graph for a function f : X → R defined on X.

f

p

q

β0

β2β1 p̃

q̃

Intuitively, the Reeb
graph RbX(f) is ob-
tained by continuously
collapsing each contour
in the level set into a
single point. See the right
figure where we plot the
Reeb graph such that the
height of each point is the
value of f on points from its preimage in X. Formally, there is a
continuous surjection Φ : X → RbX(f) such that Φ(x) = Φ(y)
if and only if x and y belong to the same connected component

(a contour) of a level set f−1(α) for some α ∈ R. Specifically,
imagine we sweep X in increasing value of f . As we pass through
a minimum (resp. a maximum) of f in X, a new connected
component is created (resp. a contour disappears) in the level set,
giving rise to a degree-1 node in RbX(f). As we pass through a
splitting saddle of f in X (e.g, p in the right figure), a connected
component splits into two (e.g, the contour β0 splits into β1 and
β2). This gives rise to an up-fork saddle in the Reeb graph RbX

(p̃ in the figure), which is a degree-3 node in the Reeb graph with
up-degree 2. Symmetrically, a merging saddle of f in X will give
rise to a down-fork saddle in the Reeb graph with down-degree 2
(see q and q̃ in the right figure). For a Morse function f : X → R,
these are all the non-regular points of a Reeb graph (empty dots
in the figure). All other nodes in the Reeb graph are regular, with
both up-degree and down-degree being 1.

The Reeb graph is simple, meaningful and can be computed effi-
ciently [Pascucci et al. 2007; Tierny et al. 2009; Doraiswamy and
Natarajan 2009; Harvey et al. 2010; Parsa 2012]. It has found a
large number of practical applications in computer graphics and vi-
sualization; see e.g. the survey [Biasotti et al. 2008] and references
therein.

For an orientable compact surface M, it turns out that the Reeb
graph RbM(f) encodes valuable information about M. For exam-
ple, if the surface M has genus g, then there are g independent loops
in the Reeb graph RbM(f) for any Morse function f : M → R

defined on M [Cole-McLaughlin et al. 2004]. One of the key ob-
servations of the current paper is that we can compute a special set
of loops using the Reeb graph w.r.t. a specific function (the height
function), that can help us untangle the interplay of the interior I

and the exterior O on the loops of the surface M, and eventually to
separate handle and tunnel loops.

2.3 Linking numbers

Our algorithm also uses the concept of linking
number that helps us to decide whether a loop
is a handle or tunnel (or neither). The linking
number between two disjoint loops embedded
in R

3 gives the information on how one winds
around the other. Since we work with Z2, this
number is 1 if one winds around the other odd number of times and
zero otherwise. The figure on right shows two loops with a linking
number 1. Formally we define:

Definition 2.2 ([Rolfsen 1976]) Let γ and α be two disjoint loops
in R

3. Let [τ ] be a generator of H1(R
3 − γ)(∼= Z2). If [α] = b[τ ],

the linking number Lk(γ, α) is defined to be b ∈ {0, 1}.

An Efficient Computation of Handle and Tunnel Loops via Reeb Graphs        •        32:3
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From this definition, one immediately gets the following which will
be useful in checking for handles and tunnels later.

1. Lk(γ, α) = 0 if and only if [α] is trivial in H1(R
3 − γ);

2. If [α1] = [α2] for α1, α2 ∈ R
3 − γ, then Lk(γ, α1) =

Lk(γ, α2).

γ′
α′

+1

−1

+1

The linking number can be computed us-
ing the following simple procedure (which
in fact offers an alternative definition for the
linking number) [Rolfsen 1976]1: Assign an
arbitrary orientation to γ and to α. Take any
regular projection of γ ∪ α onto a plane P
such that γ′ and α′, the projection of γ and α in P respectively,
intersects transversely. Consider only the set of positive crossings
C of γ′ and α′ at which γ crosses above α. For each crossing x,
assign sign(x) = 1 if it is a counter-clockwise turn from the ori-
entation of γ′ to that of α′; otherwise, sign(x) = −1. See the
right figure for an illustration where the top crossing is not a posi-
tive crossing. The linking number Lk(γ, α) is the sum, modulo 2,
of these sign(·)s over all positive crossings of γ′ and α′; that is,
Lk(γ, α) = [

P
x∈C sign(x) ] mod 2.

3 Algorithm

Our algorithm contains two parts. The first part is an algorithm
which, given a surface mesh M, computes a basis for the handle
loops as well as a basis for the tunnel loops. The second part takes
these initial basis loops as input, performs further geometric opti-
mization to tighten them and return new basis loops that are also
geometrically relevant. Below we describe each part in detail. The
overall algorithm is shown in Algorithm 1.

Figure 4: ENGINE model (left) and GEARBOX model (right). Only
the tunnel loops are shown to reduce the clutter in display.

3.1 Handle/Tunnel computation

We elaborate on each step of Algorithm1 justifying them by appro-
priate theory. We remark that while the correctness of our algorithm
requires non-trivial theoretical analysis, the algorithm itself (as de-
scribed in Algorithm1) is easy to implement.

The input is a triangular mesh M in R
3 whose underlying space

|M| is a closed surface. Suppose that M has genus g and contains
n vertices. For the Reeb graph, we use the height function h :
|M| → R defined on M where h(x) is the height of x in an arbitrary
but fixed direction. We assume that h is a Morse function, which
roughly means that no two vertices share the same function value,
and no critical point is degenerate. This does not cause loss of
generality as the set of directions such that h is not Morse is of
measure zero among all possible directions. For this height function

1The definition and computation of the linking number use coefficient

ring Z in [Rolfsen 1976]. They can be easily extended to Z2 coefficients as

we use.

h, the level set h−1(α) consists of a set of contours (simple loops)
for any generic α, except when α is a critical value where h has a
minimum, maximum, or a saddle. We call the height function h :
R

3 → R defined on R
3(⊃ M) the ambient space height function.

Step 1. The Reeb graph of a function on a surface mesh M can
be computed efficiently by a number of algorithms in O(n log n)
time (e.g, [Cole-McLaughlin et al. 2004; Harvey et al. 2010; Parsa
2012]). We compute the Reeb graph RbM for the height function h
by the algorithm of [Harvey et al. 2010].

Step 2. Given the graph RbM, we compute a specific cycle basis
of it. It is known that a cycle basis of RbM contains g cycles if
M is of genus g [Cole-McLaughlin et al. 2004]. We compute a
cycle basis of RbM with some special properties that help later to
compute a basis for H1(I) and H1(O), and to claim that a certain
matrix L obtained from linking numbers is invertible.

For each arc e in RbM, we associate a weight w(e) where w(e)
is the height value of the lower end-point of e. Next, we compute
a maximum-weight spanning tree T of RbM based on these edge
weights. Each edge e of RbM not in T induces a canonical cycle ce

in RbM, which is the unique cycle formed by e and some tree edges
of T . It is known that for any spanning tree T , the set of cycles
{ce}e∈RbM\T form a cycle basis of RbM. Since T is a maximum
weight spanning tree with edge weights as specified, we have the
following property:

• The lower endpoint p̃ of e is the lowest point of the loop ce,
and p̃ is an up-fork saddle of RbM.

Step 3. We map back the cycles {ce} detected in the previous
step to the surface M. That is, for each Reeb graph loop ce, we find
a pre-image loop in M that is mapped to ce under the surjection
Φ : M → RbM. The mapping can be done by finding a pre-
image path for each Reeb arc, and assembling such paths to obtain
a loop for each γi. Let γ1, γ2, . . . , γg denote the resulting pre-
image loops in M (for Reeb graph loops {ce}) sorted in increasing
order of their lowest points (vertices). Since h is a Morse function,
the lowest points of these loops are all distinct and have different
function values. Furthermore, each lowest point is necessarily a
splitting saddle in M.

p

q

β0

β1
β2

γi

For every loop γi, we compute a dual
loop γi in the level set; see the fig-
ure on right for an illustration. Take
the lowest vertex p of γi and consider
the level set L+

p at height h(p) + ε
just above the vertex p for a suffi-
ciently small ε. Since p is a split-
ting saddle for the height function h,
there are exactly two contours (sim-
ple loops β1 and β2) in the level set
L+

p that intersects γi. Either of these
two contours can be taken as the dual
loop γi: For specificity, we take the leftmost one (i.e, the one whose
smallest x-coordinate is smaller, which is β1 in the figure). See also
Figure 1 (c) for the set of γis (red) and their duals (blue). The loops
{γi}g

i=1 and {γi}g
i=1 have the following properties:

L0. {[γi]}g
i=1 ∪{[γi]}g

i=1 is a basis of H1(M) (proof in Section 1

of the supplement 2).

L1. γi and γi have exactly one intersection point; and γi and γj

have at most one intersection point.

2available from authors’ web-pages
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L2. All cycles in {γi} are disjoint and each of them lies in a dif-
ferent level set. Thus, they are all unlinked.

L3. γi is disjoint and unlinked with γj for j > i. This is because
the lowest point of γj is above the level set containing γi.

Step 4. In this step we push every loop γi and γj either toward
inside I or toward outside O based on certain simple rules. These
perturbed loops constitute the bases of H1(I) and H1(O). First, we

p

R[β0]

R[β1] R[β2]

β0

β1 β2

R[β0] β0

p

β2β1R[β1]R[β2]

(a) (b)

Figure 5: Dashed loops are pushed version β′
i of βi. (a) R[β1] and

R[β2] are disjoint. (b) R[β1] ⊂ R[β2].

make a distinction among the loops γi and γi according to the fol-
lowing four configurations. Recall that p is the lowest point of γi

and is a splitting saddle point on M with respect to the height func-
tion h. Let β0 be the loop, in the level set L−

p just below h(p),
which splits above p. Let β1 and β2 be the two new loops in the
level set L+

p just above h(p). Denote by R[β] the closed region
bounded by a simple loop β within the corresponding level set for
the ambient space height function h : R

3 → R (which is a plane).
Now, for each βi, we push it to the interior of R[βi] by an infinites-
imally small offset and obtain another loop β′

i, for i = 0, 1, 2. See
Figure 5. There are four configurations3 for p:

1. β1 and β2 doesn’t contain each other (Figure 5 (a)):

(a) β′
0 ⊂ I, which implies that β′

i ⊂ I for i = 1, 2;

(b) β′
0 ⊂ O, which implies that β′

i ⊂ O for i = 1, 2;

2. One is contained in the region bounded by the other, say,
R[β1] ⊂ R[β2] (Figure 5 (b)):

(a) β′
0 ⊂ I, which implies that β′

1 ⊂ O and β′
2 ⊂ I;

(b) β′
0 ⊂ O, which implies that β′

1 ⊂ I and β′
2 ⊂ O.

Which configuration γi is in can be checked locally by inspect-
ing only the one-ring neighborhood NN(p) of the saddle point p in
O(|NN(p)|) time. We prove (Section 2 of the supplement):

Theorem 3.1 The loops γi and γi are non-trivial in H1(I) and
H1(O) respectively when the lowest point of γi admits the config-
uration (1.a) or (2.b). They are non-trivial in H1(O) and H1(I)
respectively when the configuration is (1.b) or (2.a).

According to the above theorem, we can divide the loops {γi}g
i=1

into two groups: {γπj}n
j=1 and {γπj}g

j=n+1 such that [γπj ], 1 ≤
j ≤ n is nontrivial in H1(I); and [γπj ], n+1 ≤ j ≤ g is nontrivial
in H1(O). By theorem 3.1, we have that the homology classes of
{γπj

}g
j=n+1 are nontrivial in H1(I), and the homology classes of

{γπj
}n

j=1 are nontrivial in H1(O). These give rise to two family

of loops: Γ1 := {γπj}n
j=1 ∪ {γπj

}g
j=n+1, which are non-trivial in

H1(I); and Γ2 := {γπj}g
j=n+1 ∪ {γπj

}n
j=1, which are non-trivial

3We note that each region R[βi] may not be completely contained in

I nor O, since there could be other contours in the level set, not drawn

in Figure 5, that are contained within these regions. , we use β′
i to help

distinguish different configurations.

in H1(O). Furthermore, it turns out (from the proof of Theorem
3.2) that loops in Γ1 (resp. in Γ2) are independent in I (resp. in
O). Since the dimensions of H1(I) and of H1(O) are both g (Theo-
rem 2.1), it follows that Γ1 and Γ2 form a cycle basis for H1(I) and
for H1(O), respectively.

Note that Theorem 3.1 does not state that a loop in Γ1 is necessarily
trivial in H1(O) (see e.g the loop γ3 in Figure 2, which could belong
to Γ1). Hence, loops in Γ1, while forming a basis for H1(I), may
not yet form a basis for the tunnel loops. Similarly, loops in Γ2 are
not necessarily handles. To compute handle / tunnel loops, we will
need (in Step 5) to compute a linking number matrix whose entries
are the linking numbers between basis elements of H1(I) ⊕ H1(O)
and the loops {γi} ∪ {γi}. The definition of the linking number
requires that the two participating curves be disjoint (while loops in
{γi} ∪ {γi} may intersect).

To this end, we perturb the loops γis and γis to get a new set of
basis cycles for H1(I) and H1(O) which are disjoint from the loops
with which we compute the linking number.

Specifically, we push each loop in Γ1 (which is non-trivial in H1(I))

toward the interior I̊ of I. Symmetrically, we push each loop in Γ2

(which is non-trivial in H1(O)) toward the interior O̊ of the exte-
rior O. The loops in Γ1 (resp. in Γ2) remain homologous to their
perturbed version in I (resp. O). The loop γi is only perturbed in
its level set. Let the perturbed loops of {γi}g

i=1 and {γi}g
i=1 be

{αi}g
i=1 and {αi}g

i=1, respectively. Let A1 and A2 denote the set
of perturbed loops for Γ1 and Γ2, respectively. Note that all loops

in A1 are now contained in I̊, while all loops in A2 are in O̊. Hence,
they are disjoint from loops in {γi} ∪ {γi} which are contained in
M.

Theorem 3.2 (i) A1 = {απj}n
j=1 ∪ {απj}g

j=n+1 is a cycle basis
of H1(I). A2 = {απj}g

j=n+1∪{απj}n
j=1 is a cycle basis of H1(O).

(ii) Let D denote the g×g matrix of linking numbers where D[i][j]
is the linking number of the i-th loop from A1 with the j-th loop
from A2. Then the matrix D is non-singular.

Not every cycle basis for H1(I) and H1(O) satisfies claim (ii) above.
This special property, which will be important to derive our main
result, holds for A1 and A2 due to Property (L1), (L2) and (L3) of
γis and γis stated earlier in (Step 3). See Section 3 of the supple-
ment for the proof of this theorem.

Later in (Step 5), we would need to compute the linking number
between a loop from {γi} ∪ {γi} and a loop from {αi} ∪ {αi},
say Lk(γi, αj). We remark that in our implementation, we do not
physically perturb the entire curve γj or γj to get αj or αj . Rather,
we only perturb each loop locally around its intersections with the
loop that we compute linking number with. See Section 1 of the
supplement for the implementation details.

Step 5. The identification of the handle and tunnel loops relies
on the following key lemma, whose proof (in Section 4 of the sup-
plement) uses Theorem 3.2 (i) and (ii), as well as the observations
below Definition 2.2.

Lemma 3.3 If a loop � has zero linking number with every loop in
A1, but has a non-zero linking number with at least one loop in A2,
then � is a tunnel loop. Symmetrically, if � has zero linking number
with every loop in A2, but has a non-zero linking number with at
least one loop in A1, then � is a handle loop.

To compute loops satisfying the conditions in the above claim,
we compute a matrix L of linking numbers to be defined shortly.
First, consider the loops γ1, γ2, . . . , γg on M enumerated in in-
creasing order of the height values of their lowest points. The
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Figure 6: Various examples. From left to right: KNOTTY-CUP, FILIGREE, HEPTOROID and CASTING.

Properties (L0)- (L3) of these loops induce similar properties for
their perturbed versions α1, α2, . . . , αg and their dual counterparts
α1, α2, . . . , αg . In particular, we have:

P0. Loops in {γi}g
i=1 ∪ {γi}g

i=1 are disjoint from loops in
{αi}g

i=1 ∪ {αi}g
i=1.

P1. For i = 1, . . . , g, Lk(γi, αi) = Lk(γi, αi) = 1.

P2. Every αi is in a different level set and hence all αis are mutu-
ally unlinked. They also do not link with any loop in {γj}.

P3. If i > j, then αj is unlinked with αi because the lowest point
of αi is above the level set that contains αj .

To describe the entries of the linking number matrix L, write
γg+i = γi and αg+i = αi. Then L = {lij} where lij =
Lk(γi, αj), for i, j ∈ [1, 2g]. It turns out that L is nonsingular
and hence invertible. To see why this is the case, consider the ma-
trix L′ shown below, which is obtained by permuting some columns
and rows of L. Hence, L is non-singular if and only if L′ is non-
singular.

A

C = 0 D

B

γ1
γ2

γg

γg

γg−1

γ1

α1 α2 αg αg αg−1 α1

L′ =

The matrix L′ consists of four submatrices as shown above, where
sub-matrices A and D are both upper-triangular by Property (P3)
and submatrix C = 0 by Property (P2). Thus, L′ is upper-
triangular. Furthermore, all diagonal elements of A and D (and
thus of L′) are non-zero due to Property (P1). Hence, L′ is non-
singular, implying that L is also non-singular.

Since L is nonsingular, one can take its inverse L−1 = {l′ij} in
the field Z2. We take 2g new loops on M as linear combinations
of {γi} according to L−1, that is, the set of loops given by {βi :=
P2g

j=1 l′ijγj}2g
i=1. In particular, consider the set of {βk} where each

k is a column index in L′ that corresponds to a loop in A1. This set
forms a basis for the tunnel loops, and we denote them by {ti}g

i=1.
Symmetrically, the set of βis whose indices correspond to those in
A2 forms a basis for the handle loops, and we denote these loops
by {hi}g

i=1. To see that loops {hi} and {ti} are indeed handle and
tunnel loops, note that the new linking number matrix formed by

these loops with αis is L−1L = I . Hence, by Lemma 3.3, each hi

is a handle and each ti is a tunnel, for i = 1, . . . , g.

Remark. A shortest handle or tunnel loop may contain multiple
connected components. In our algorithm, while each loop γi (and
γj) is connected, each hi (or tj) may contain multiple components
(loops) due to the matrix inversion in (Step 5). However, such oc-
currences seem rare and we have not observed it in our experiments.

3.2 Tightening the loops

We have now obtained a set of g independent handle loops {hi}g
i=1

and a set of g independent tunnel loops {ti}g
i=1. However, they

may not have desirable geometry; specifically, they may be unnec-
essarily long and winding. See Figure 1 (c). In this step, we wish to
tighten these loops so that they “hug” the handle and tunnels more
closely as in Figure 1 (d).

Ideally, we wish to obtain the shortest basis for handle loops (resp.
for tunnel loops) whose total length is the smallest among all basis
for handles (resp. tunnels). A polynomial time greedy algorithm
to compute the shortest cycle basis for H1(M) exists [Erickson and
Whittlesey 2005]. However, loops in a shortest cycle basis may be
neither handles nor tunnels, and it is not clear how to solve this
optimization problem in polynomial time when only constrained to
the set of handle (or tunnel) loops. Instead, we develop an iterative
approach that is both simple and effective in practice. We describe
it for the handles, and the case for tunnel loops is similar.

It is observed in [Dey et al. 2011] that any loop � in the shortest
cycle basis for H1(M) is necessarily canonical in the sense that
it consists of an edge e = (u, v) concatenated with two shortest
paths π(u, w) and π(v, w) from u and v to another vertex w in
the mesh M. Using ideas from [Erickson and Whittlesey 2005],
the following approach is proposed in [Dey et al. 2011] to compute
a shortest cycle basis for H1(M) (in fact, the algorithm works for
any simplicial complex): (a) first enumerate all canonical loops on
M, ordering them by their lengths, and (b) then find the first 2g
independent loops greedily.

We modify the above approach in two ways: First, in step (b), in-
stead of finding the first 2g independent loops, we find the first
g independent handle loops from the set of canonical loops. To
test whether a canonical loop � is a handle loop or not, we check
whether [�] can be written as a linear combination of handle loops
from the basis {hi}g

i=1 that we already computed. This checking is
done by the procedure described in [Busaryev et al. 2012] using the
so-called annotation for edges in M.

Second, to improve efficiency, in step (a), instead of using all
canonical loops (which involves computing n shortest path trees
each rooted at a vertex of M), we use an iterative framework. At
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each iteration in step (a), we use only a subset C of canonical loops.
Specifically, instead of computing a shortest path tree at each of the
n vertices of M, we compute them only at O(g) number of base
points at each iteration. In the first iteration, the set of base points is
taken as the set of lowest points {p1, . . . , pg} of all loops in {γi}.
For subsequent k-th iterations, k > 1, assume we have already

computed a basis for handle loops B(k−1) in the previous iteration.
We now pick a constant number of points (the constant is set to be 2
in our implementation) randomly from each handle loop in the cur-

rent basis B(k−1) as base points. Once these O(g) base points are
selected, we build a shortest path tree Ti rooted at each base point
pi. Now consider Ti: any edge e /∈ Ti forms a unique canonical
loop by concatenating e with the two shortest paths from each of its
endpoint to the root pi. The collection of such canonical loops for
all Tis constitute C. We also insert loops in hi to C to guarantee
that a basis for handles can always be identified from C. Finally,
we sort loops in C by their lengths and feed them to step (b).

We iterate steps (a) and (b) for a few rounds till the lengths of the
output handle loops converge or we reach a maximum number of
iterations. The algorithm is summarized in Algorithm 2. In all our
experiments, only a small number of iterations, usually less than
100, are needed for the total lengths of the output handle loops to
converge.

Input : A set of initial handles {hi}g
i=1 and tunnels {ti}g

i=1;
Output: A set of new basis {h∗

i }g
i=1 for handle loops;

Set current basis of handle loops B(0) = {h(0)
i := hi}g

i=1;
Set k = 0 ;
repeat

(a). Compute a set of canonical loops C from the shortest
path trees for O(g) base points, and sort them by length ;

(b). Compute the first g independent handle loops B(k+1)

from C using annotations [Busaryev et al. 2012] ;

until (total length of B(k) converge) or (k ≥ MaxItNum);
Output the current basis B(k+1) for handle loops;

Algorithm 2: Algorithm for tightening the handle loops.

3.3 Time complexity analysis

Given a triangulation of n vertices modeling a compact orientable
surface of genus g, (Step 1) takes O(n log n) time to compute the
Reeb graph, and (Step 2) takes O(n log n + gn) time to construct
the maximum spanning tree and report the set of g basis cycles in
the Reeb graph. (Step 3) takes time linear in the total complexity
of all the level sets passing through the saddle points of h, which in
the worst case can be O(n2), but in practice is much smaller. (Step
4) and (Step 5) takes O(g2n2) time to compute the linking num-
ber matrix L, O(g3) time to compute the inverse matrix L−1, and
O(g2n) time to construct the new handle and tunnel basis {hi}g

i=1

and {ti}g
i=1. Overall, the first part of the algorithm takes O(g2n2)

time. We observe in practice that this part is very efficient and takes
time linear in n, instead of quadratic in n. Indeed, as we see in Ta-
ble 1, for all our tested examples, the first part ran much faster than
the second part of the algorithm.

For the second part of the algorithm, first observe that, since M is a
surface mesh, it needs only O(gn) time to compute the annotation
for edges in M [Erickson and Nayyeri 2011]. These annotations
associate each edge e with a size g vector a(e) [Busaryev et al.
2012]. Each iteration of Algorithm 2 takes O(gn log n) time to
compute O(g) number of shortest path trees. Each shortest path
tree produces at most n canonical loops, which can be computed

and annotated in O(gn) time (see [Busaryev et al. 2012]). Al-
together, we have O(gn) number of canonical loops in C whose
annotations take O(g2n) time altogether. Once these annotations
are computed, checking for independence takes O(g2) time for
each loop [Busaryev et al. 2012] and O(g3n) time for all loops
in C. Finally, assume that our algorithm performs k number of
iterations. The overall time complexity for Algorithm 2 is thus
O(gnk log n + g3nk). Note that, k is only a small constant for
all of our tested examples.

In contrast, we note that the algorithm of [Dey et al. 2008] takes
O(N3) time incurred by the persistence algorithm, where N is the
size of the tetrahedral mesh after tessellating the space around the
input surface mesh (which has only O(n) complexity). In the worst
case, N could be Ω(n2).

4 Experiments

(a) (b) (c)

Figure 7: More examples. (a) COLON, (b) FUSEE, (c) PEGASUS.

We have run our algorithms on a variety of models, and some exam-
ples are shown in Figure 4, 6 and 7, which include smooth surfaces,
isosurface, knotted surface, and CAD models (containing sharp fea-
tures). It also handles surfaces with high genus well, see Figure 4
and Figure 7(a) for a portion of the COLON model (genus 160). The
sizes of these models can be found in Table 1.

(a) (b) (c)

Figure 8: (a) Non-uniform and (b) noisy meshes. (c) Han-
dle/tunnels from a clean BUDDHA model.

Comparisons. In Table 1, we show the timing of main components
of our algorithm, as well as that for the previous state-of-the-art
handle/tunnel loop identification algorithm of [Dey et al. 2008]. For
the algorithm of [Dey et al. 2008], we distinguish between their pre-
processing time to construct tetrahedral mesh (using the DelPSC
algorithm [Cheng et al. 2012]) and their handle/tunnel loop compu-
tation algorithm after the tetrahedral mesh is computed.

Note that our handle/tunnel basis computation (Column “Reeb
graph” + Column “Step 2–5”) is several orders of magnitude faster
than the previous approach. This is achieved without the need for
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Model detail Our Algorithm Timing (sec) [Dey et al. 2008] (sec)
Name Size (#Ver, #Tri), Genus Reeb Graph Step 2–5 Tightening Total Pre-process Loop compl

KNOTTY-CUP (5.4K, 10.8K) 2 0.03 0.03 1.11 1.17 12.1 3.01
CASTING (20K, 40.8K) 9 0.23 0.08 1.7 2.01 99.8 13.7
BOTIJO (33.7K, 67.4K) 5 0.52 0.2 2.08 2.8 166.1 40.1

BUDDHA (54K, 108K) 9 0.78 0.12 4.96 5.86 697.3 Fail
FUSEE (121K, 243K) 18 2.9 0.37 40.19 43.46 1713.5 559.7

GEARBOX (238K, 477K) 78 4.64 53.95 340.64 399.23 N/A
HEPTOROID (287K, 573K) 22 4.04 3.06 118.27 125.37 8797.1 2980.0

COLON (427K, 854K) 160 6.38 39.47 2790.41 2836.26 N/A
FILIGREE (514K, 1.03M ) 65 79.97 25.17 559.12 664.26 N/A

Table 1: Timing results in seconds. “Fail” means that the algorithm crashes on the input, while “N/A” means that the algorithm has not
finished after running for 10 hours.

Figure 9: Meshes with boundary.

constructing any volumetric mesh, which itself can be non-trivial,
and could also require the input surface mesh change in order to
obtain volume meshes that are compatible to it.

The step which tightens the loops typically takes more time, es-
pecially when the genus g of the input surface is large. However,
the speed of our loop-tightening step still compares more favorably
with the previous approach even when we ignore its pre-processing
time, which is typically order of magnitude larger than its loop-
computation step.

We remark that since the preprocessing of [Dey et al. 2008] may
increase the size of the input mesh, for fair comparison of the com-
putational time, we choose parameters of DelPSC algorithm so that
the output surface mesh has a size at most that of our input. Fur-
thermore, our algorithm is very robust w.r.t. sparse meshes. In-
deed, the DANCING CHILDREN model in Figure 3 (a) shows very
little degradation of loop quality even though the mesh has only
459 vertices (the algorithm runs in 0.07sec). We have performed
our algorithm for denser versions of this model with 180K and
724K vertices, respectively. The running times are 24.6sec and
179.1sec, respectively. The loops produced remain stable as the
mesh becomes coarser.

Imperfect input. To demonstrate that our algorithm is robust with
respect to diverse variations and potential defects of input models,
we consider the following scenarios: (i) surface with non-uniform
meshing, (ii) surface with noise, and (iii) surface with small holes.
Figure 8 (a) shows a case of non-uniform sampling. The handles
/ tunnels produced by a noisy BOTIJO model is already given in
Figure 1. Another example is shown in Figure 8 (b), where we
also give a few vertices large perturbation to have some “outliers”.

We note that computing tetrahedral mesh is even harder for noisy
surfaces.

Finally, for surfaces with boundary, the handle / tunnel loops are
not well-defined. Furthermore, the boundary loops can be knotted
disallowing sealing them with disks. Currently, we consider only
small disk-sealable holes and follow a simple heuristic. We seal
each hole by putting an extra vertex v at the centroid of the vertices
on its boundary and connecting v to the edges on boundary. We
put large weights for these extra edges so that optimized handle and
tunnel loops on the sealed surface do not contain these extra edges.
This approach works for simple holes, as shown in Figure 9. More
sophisticated approach is necessary to handle more complex holes,
which we leave for future research.

5 Limitation and Discussion

In this work, we presented an algorithm that can compute a basis for
handle and tunnel loops on an input surface mesh. The main advan-
tage of this new algorithm is that, unlike the previous approaches,
we do not need any expensive tetrahedral mesh of a 3D space which
may also change the input surface as a result. The method is robust
against noise and can sustain anomalies such as non-uniform sam-
pling, non-smoothness, and small simple holes.

There are two main limitations worth investigating further. The
first one is how to handle boundaries in input (orientable) surfaces.
Handles / tunnels are not well-defined for surfaces with boundaries.
Indeed, one can seal the holes in an orientable surface in differ-
ent ways changing the interior/exterior of the resulting surface and
thereby changing the classification of a loop being handle or tunnel
or neither. Furthermore, sealing holes while preserving the embed-
ding of the resulting closed surface is not a trivial task itself. It
would be interesting to explore whether it is possible to obtain a
set of handles / tunnels for a specific valid sealing sequence, but
without explicitly performing the sealing operation.

The second limitation of the method is that, though we compute
a handle/tunnel basis with a theoretical guarantee, we cannot pro-
duce a shortest basis with such a guarantee: our algorithm currently
uses a heuristic to tighten the initial set of handle/tunnel loops. Al-
though the algorithms for producing a shortest basis for H1 homol-
ogy (i.e, for non-null homologous loops) exist [Erickson and Whit-
tlesey 2005; Dey et al. 2011], the same approaches do not directly
lead to shortest system of handle/tunnel loops. Specifically, com-
puting shortest handle/tunnel loops requires tightening a set of cy-
cles within a subgroup of H1 homology group. This gives it a flavor
similar to the problem of computing an optimal cycle within a given
homology class (under Z2 coefficients), which is a NP-hard prob-
lem in general (see [Chambers et al. 2009; Cabello et al. 2011]).
Furthermore, the polynomial-time algorithm of computing shortest
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basis for H1 homology relies on the fact that each cycle in this basis
is “tight”, meaning that it contains a shortest path between every
pairs of points in it. This characterization unfortunately does not
hold for the shortest cycle within a fixed homology class, nor for
shortest handle / tunnel loops. Hence, it is possible that it is NP-
hard to compute a shortest basis for handle/tunnel loops. It would
be interesting to settle this question formally, that is, either to prove
that the problem is indeed NP-hard and possibly come up with an
even better heuristic, or design an optimal algorithm if that is not
the case.
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